Pedersen NC. A review of immunologic diseases of the dog. Vet Immunol Immunopathol. 1999;69(2–4):251–3422.
Article
CAS
PubMed
Google Scholar
Selmi C, Lu Q, Humble MC. Heritability versus the role of the environment in autoimmunity. J Autoimmun. 2012;39(4):249–52.
Article
PubMed
Google Scholar
Greer KA, Schatzberg SJ, Porter BF, Jones KA, Famula TR, Murphy KE. Heritability and transmissionanalysis of necrotizing meningoencephalitis in the Pug. Res Vet Sci. 2009;86(3):438–42.
Article
PubMed
Google Scholar
Famula TR, Belanger JM, Oberbauer AM. Heritability and complex segregation analysis of hypoadrenocorticism in the standard poodle. J Small Anim Pract. 2003;44(1):8–12.
Article
CAS
PubMed
Google Scholar
Oberbauer AM, Benemann KS, Belanger JM, Wagner DR, Ward JH, Famula TR. Inheritance of hypoadrenocorticism in bearded collies. Am J Vet Res. 2002;63(5):643–7.
Article
PubMed
Google Scholar
Pedersen NC, Liu H, Greenfield DL, Echols LG. Multiple autoimmune diseases syndrome in Italian Greyhounds: preliminary studies of genome-wide diversity and possible associations within the dog leukocyte antigen (DLA) complex. Vet Immunol Immunopathol. 2012;145(1–2):264–76.
Article
CAS
PubMed
Google Scholar
Pedersen NC, Liu H, McLaughlin B, Sacks BN. Genetic characterization of healthy and sebaceous adenitis affected Standard Poodles from the United States and the United Kingdom. Tissue Antigens. 2012;80(1):46–57.
Article
CAS
PubMed
Google Scholar
Wilbe M, Jokinen P, Truvé K, Seppala EH, Karlsson EK, Biagi T, et al. Genome-wide association mapping identifies multiple loci or a canine SLE-related disease complex. Nat Genet. 2010;42(3):250–4.
Article
CAS
PubMed
Google Scholar
Forabosco P, Bouzigon E, Ng MY, Hermanowski J, Fisher SA, Criswell LA, et al. Meta-analysis of genome-wide linkage studies across autoimmune diseases. Eur J Hum Genet. 2009;17(2):236–43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Norio R. The Finnish Disease Heritage III: the individual diseases. Hum Genet. 2003;112(5-6):470–26.
PubMed
Google Scholar
Barrientos LS, Zapata G, Crespi JA, Posik DM, Díaz S, It V, et al. A study of the association between chronic superficial keratitis and polymorphisms in the upstream regulatory regions of DLA-DRB1, DLA-DQB1 and DLA-DQA1. Vet Immunol Immunopathol. 2013;156(3–4):205–10.
Article
CAS
PubMed
Google Scholar
Tsai KL, Starr-Moss AN, Venkataraman GM, Robinson C, Kennedy LJ, Steiner JM, et al. Alleles of the major histocompatibility complex play a role in the pathogenesis of pancreatic acinar atrophy in dogs. Immunogenetics. 2013;65(7):501–9.
Article
CAS
PubMed
Google Scholar
Hernblad TE, Bergvall K, Egenvall A. Sebaceous adenitis in Swedish dogs, a retrospective study of 104 cases. Acta Vet Scand. 2008;50:11–9.
Article
Google Scholar
Short AD, Catchpole B, Boag AM, Kennedy LJ, Massey J, Rothwell S, et al. Putative candidate genes for canine hypoadrenocorticism (Addison’s disease) in multiple dog breeds. Vet Rec. 2014;175(17):430.
Article
CAS
PubMed
Google Scholar
Wilbe M, Andersson G. MHC class II is an important genetic risk factor for canine systemic lupus erythematosus (SLE)-related disease: implications for reproductive success. Reprod Domest Anim. 2012;47 Suppl 1:27–30.
Article
PubMed
Google Scholar
Pedersen N, Liu H, Theilen G, Sacks B. The effects of dog breed development on genetic diversity and the relative influences of performance and conformation breeding. J Anim Breed Genet. 2013;130(3):236–48.
Article
CAS
PubMed
Google Scholar
Armstrong J. 1997. The Legacy of Sir Gay. http://www.dogenes.com/poodle/wycliffe/standard.html, accessed June 24, 2015.
www.phrdatabase.org/pp_FAQ.htm, accessed June 24, 2015.
Tsai S, Santamaria P. MHC Class II Polymorphisms, Autoreactive T-Cells, and Autoimmunity. Front Immunol. 2013;4:321.
Article
PubMed Central
PubMed
Google Scholar
Goris A, liston A. The immunoenetic architecture of autoimmune disease. Cold Spring Harb. Perspect. Biol. 2012; 4(3), doi:10.1101/cshperspect.a007260
Jokinen P. Identifying genetic risk factors in canine autoimmune disease. University of Helsinki, 2011,https://helda.helsinki.fi/bitstream/handle/10138/24488/identify.pdf?sequence=1, accessed April 28, 2014.
Massey J, Short AD, Catchpole B, House A, Day MJ, Lohi H, et al. Genetics of canine anal furunculosis in the German shepherd dog. Immunogenetics. 2014;66(5):311–24.
Article
CAS
PubMed
Google Scholar
Greer KA, Wong AK, Liu H, Famula TR, Pedersen NC, Ruhe A, et al. Necrotizing meningoencephalitis of Pug dogs associates with dog leukocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens. 2010;76(2):110–8.
CAS
PubMed
Google Scholar
Irion DN, Schaffer AL, Famula TR, Eggleston ML, Hughes SS, Pedersen NC. Analysis of geneticvariation in 28 dog breed populations with 100 microsatellite markers. J Hered. 2003;94(1):81–7.
Article
CAS
PubMed
Google Scholar
http://www.phrdatabase.com/, accessed July 16, 2015.
Puja IK, Irion DN, Schaffer AL, Pedersen NC. The Kintamani dog: genetic profile of an emerging breed from Bali. Indonesia J Hered. 2005;96(1):854–9.
Article
CAS
PubMed
Google Scholar
Amos W, Wilmer JW, Fullard K, Burg TM, Croxall JP, Bloch D, et al. The influence of parental relatedness on reproductive success. Proc R Soc Lond, B. 2001;268(1480):2021–7.
Article
CAS
Google Scholar
Acevedo-Whitehouse K, Gulland F, Greig D, Amos W. Disease susceptibility in California sea lions. Inbreeding influences the response of these animals to different pathogens in the wild. Nature. 2003;422(6927):35.
Article
CAS
PubMed
Google Scholar
Hoffman JI, Boyd IL, Amos W. Exploring the relationship between parental relatedness and male reproductive success in the Antarctic fur seal Arctocephalus gazella. Evolution. 2004;58(9):2087–99.
Article
PubMed
Google Scholar
Bean K, Amos W, Pomeroy PP, Twiss SD, Coulson TN, Boyd IL. Patterns of parental relatedness and pup survival in the grey seal (Halichoerus grypus). Mol Ecol. 2004;13(8):2365–70.
Article
CAS
PubMed
Google Scholar
Banks SC, Dubach J, Viggers KL, Lindenmayer DB. Adult survival and microsatellite diversity inpossums: effects of major histocompatibility complex-linked microsatellite diversity but not multilocus inbreeding estimators. Oecologia. 2009;162(2):359–70.
Article
PubMed
Google Scholar
Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B. Heterozygosity–fitness correlations in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol. 2012;21(13):3237–49.
Article
PubMed
Google Scholar
Massey J, Boag A, Short AD, Scholey RA, Henthorn PS, Littman MP, et al. MHC class II association study in eight breeds of dog with hypoadrenocorticism. Immunogenetics. 2013;65(4):291–7.
Article
CAS
PubMed
Google Scholar
Kennedy LJ, Barnes A, Short A, Brown JJ, Lester S, Seddon J, et al. Canine DLA diversity: 1. New alleles and haplotypes. Tissue Antigens. 2007;69 Suppl 1:272–88.
Article
CAS
PubMed
Google Scholar
Venkataraman GM, Stroup P, Graves SS, Storb R. An improved method for dog leukocyte antigen 88 typing and two new major histocompatibility complex class I alleles, DLA-88*01101 and DLA-88*01201. Tissue Antigens. 2007;70(1):53–7.
Article
CAS
PubMed
Google Scholar
Kauppi L, Sajantila A, Jeffreys AJ. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region. Hum Mol Genet. 2003;12(1):33–40.
Article
CAS
PubMed
Google Scholar
Safra N, Pedersen NC, Wolf Z, Johnson EG, Liu HW, Hughes AM, et al. Expanded dog leukocyte antigen (DLA) single nucleotide polymorphism (SNP) genotyping reveals spurious class II associations. Vet J. 2011;189(2):220–6.
Article
PubMed Central
CAS
PubMed
Google Scholar
Greer KA, Wong AK, Liu H, Famula TR, Pedersen NC, Ruhe A, et al. Necrotizing meningoencephalitis of Pug dogs associates with dog leukocyte antigen class II and resembles acute variant forms of multiple sclerosis. Tissue Antigens. 2010;76(2):110–8.
CAS
PubMed
Google Scholar
Barber RM, Schatzberg SJ, Corneveaux JJ, Allen AN, Porter BF, Pruzin JJ, et al. Identification of risk loci for necrotizing meningoencephalitis in Pug dogs. J Hered. 2011;102 Suppl 1:S40–6.
Article
CAS
PubMed
Google Scholar
Tsai KL, Noorai RE, Starr-Moss AN, Quignon P, Rinz CJ, Ostrander EA, et al. Genome-wide association studies for multiple diseases of the German Shepherd Dog. Mamm Genome. 2012;23(1–2):203–11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Skoglund P, Ersmark E, Palkopoulou E, Dalén L. Ancient Wolf Genome Reveals an Early Divergenceof Domestic Dog Ancestors and Admixture into High-Latitude Breeds. Curr Biol. 2015;11(2):1515–0.
Article
Google Scholar
Sacks BN, Brown SK, Stephens D, Pedersen NC, Wu JT, Berry O. Y chromosome analysis of dingoes and southeast asian village dogs suggests a Neolithic continental expansion from Southeast Asiafollowed by multiple Austronesian dispersals. Mol Biol Evol. 2013;30(5):1103–18.
Article
CAS
PubMed
Google Scholar
Bellumori TP, Famula TR, Bannasch DL, Belanger JM, Oberbauer AM. Prevalence of inherited disorders among mixed-breed and purebred dogs: 27,254 cases (1995–2010). J Am Vet Med Assoc. 2013;242(11):1549–55.
Article
PubMed
Google Scholar
Downs LM, Hitti R, Pregnolato S, Mellersh CS. Genetic screening for PRA-associated mutations in multiple dog breeds shows that PRA is heterogeneous within and between breeds. Vet Ophthalmol. 2014;17(2):126–30.
Article
CAS
PubMed
Google Scholar
http://idid.vet.cam.ac.uk/search.php; accessed 08/2015.
Schoenebeck JJ, Ostrander EA. Insights into morphology and disease from the dog genome project. Annu Rev Cell Dev Biol. 2014;30:535–60.
Article
CAS
PubMed
Google Scholar
Farrell LL, Schoenebeck JJ, Wiener P, Clements DN, Summers KM. The challenges of pedigree dog health: approaches to combating inherited disease. Canine Genetics Epidem. 2015; 2(3):doi:10.1186/s40575-015-0014-9
http://www.isag.us/Docs/consignmentforms/2005ISAGPanelDOG.pdf, accessed June 27, 2015.
Haas-Rochholz H, Weiler G. Additional primer sets for an amelogenin gene PCR-based DNA-sex test. Int J Legal Med. 1997;110(6):312–5.
Article
CAS
PubMed
Google Scholar
Wictum E, Kun T, Lindquist C, Malvick J, Vankan D, Sacks B. Developmental validation of DogFiler, a novel multiplex for canine DNA profiling in forensic casework. Forensic Sci Int Genet. 2013;7(1):82–91.
Article
CAS
PubMed
Google Scholar
Toonen RJ, Hughes S. Increased throughput for fragment analysis on AI prism 377 automated sequencer using a membrane comb and STRand software. Biotechniques. 2002;31(6):1320–4.
Google Scholar
https://www.vgl.ucdavis.edu/dogset/, accessed June 27, 2015.
Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction frompopulation data. Am J Hum Genet. 2001;68(4):978–89.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pedersen NC, Kennedy LJ. A Genetic Comparison of Standard and Miniature Poodles based on autosomal markers and DLA class II haplotypes. http://www.vetmed.ucdavis.edu/ccah/local-assets/pdfs/Miniature_Poodle_genetic_comparison_May-23-2012.pdf, Accessed July 29, 2015.
https://www.vgl.ucdavis.edu/services/dog/GeneticDiversityInItalianGreyhounds.php, accessed July 29, 2015.
Peakall R, Smouse PE. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Bioinformatics. 2012;28(19):2537–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
https://www.medcalc.net/tests/relative_risk.php. Accessed June 26, 2015.
Queller DC, Goodnight KF. Estimating relatedness using genetic markers. Evolution. 1989;43(2):258–75.
Article
Google Scholar
http://www.standardpoodledatabase.com/, accessed 02/17/2015.
Wright S. Coefficients of inbreeding and relationship. Am Nat. 1922;56:330–8.
Article
Google Scholar
Boichard D, Maignel L, Verrier E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet Sel Evol. 1997;29:5–23.
Article
PubMed Central
Google Scholar
Lacy RC. Analysis of founder representation in pedigrees: Founder equivalents and foundergenome equivalents. Zoo Biol. 1989;8(2):111–23.
Article
Google Scholar