Scott-Moncrieff JC. Hypoadrenocorticism. In: Canine Feline Endocrinol: Elsevier; 2015. p. 485–520. https://doi.org/10.1016/B978-1-4557-4456-5.00012-2.
Frank CB, Valentin SY, Scott-Moncrieff JCR, Miller MA. Correlation of inflammation with adrenocortical atrophy in canine Adrenalitis. J Comp Pathol. 2013;149:268–79. https://doi.org/10.1016/j.jcpa.2012.11.242.
Article
CAS
PubMed
Google Scholar
Chase K, Lawler DF, McGill LD, Miller S, Nielsen M, Lark KG. Age relationships of postmortem observations in Portuguese water dogs. Age (Omaha). 2010;33:461–73. https://doi.org/10.1007/s11357-010-9181-5.
Article
CAS
Google Scholar
Zelissen PMJ, Bast EJEG, Croughs RJM. Associated autoimmunity in Addison’s disease. J Autoimmun. 1995;8:121–30. https://doi.org/10.1006/jaut.1995.0009.
Article
CAS
PubMed
Google Scholar
Boag AM, Christie MR, McLaughlin KA, Syme HM, Graham PA, Catchpole B. Autoantibodies against cytochrome P450 side-chain cleavage enzyme in dogs (Canis lupus familiaris) affected with Hypoadrenocorticism (Addison’s disease). PLoS One. 2015;10:e0143458. https://doi.org/10.1371/journal.pone.0143458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boag AM, Christie MR, McLaughlin KA, Syme HM, Graham P, Catchpole B. A longitudinal study of autoantibodies against cytochrome P450 side-chain cleavage enzyme in dogs (Canis lupus familiaris) affected with hypoadrenocorticism (Addison’s disease). Vet Immunol Immunopathol. 2018;202:41–5. https://doi.org/10.1016/j.vetimm.2018.05.013.
Article
CAS
PubMed
Google Scholar
Forabosco P, Bouzigon E, Ng MY, Hermanowski J, Fisher SA, Criswell LA, et al. Meta-analysis of genome-wide linkage studies across autoimmune diseases. Eur J Hum Genet. 2008;17:236–43. https://doi.org/10.1038/ejhg.2008.163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Husebye E, Løvås K. Pathogenesis of primary adrenal insufficiency. Best Pract Res Clin Endocrinol Metab. 2009;23:147–57. https://doi.org/10.1016/j.beem.2008.09.004.
Article
CAS
PubMed
Google Scholar
Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M, et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet. 2005;76:561–71. https://doi.org/10.1086/429096.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev. 2005;204:102–15. https://doi.org/10.1111/j.0105-2896.2005.00249.x.
Article
CAS
PubMed
Google Scholar
Pearce SH, Merriman TR. Genetic progress towards the molecular basis of autoimmunity. Trends Mol Med. 2006;12:90–8. https://doi.org/10.1016/j.molmed.2005.12.005.
Article
CAS
PubMed
Google Scholar
Vaidya B, Pearce S. The emerging role of the CTLA-4 gene in autoimmune endocrinopathies. Eur J Endocrinol. 2004;150:619–26. https://doi.org/10.1530/eje.0.1500619.
Article
CAS
PubMed
Google Scholar
Kristiansen OP, Larsen ZM, Pociot F. CTLA-4 in autoimmune diseases a general susceptibility gene to autoimmunity. Genes Immun. 2000;1:170–84. https://doi.org/10.1038/sj.gene.6363655.
Article
CAS
PubMed
Google Scholar
Kemp EH, Ajjan RA, Husebye ES, Peterson P, Uibo R, Imrie H, et al. A cytotoxic T lymphocyte antigen-4 (CTLA-4) gene polymorphism is associated with autoimmune Addison’s disease in English patients. Clin Endocrinol. 1998;49:609–13. https://doi.org/10.1046/j.1365-2265.1998.00579.x.
Article
CAS
Google Scholar
Donner H, Braun J, Seidl C, Rau H, Finke R, Ventz M, et al. Codon 17 polymorphism of the cytotoxic T lymphocyte antigen 4 gene in Hashimoto’s thyroiditis and Addison’s disease. J Clin Endocrinol Metab. 1997;82:4130–2.
CAS
PubMed
Google Scholar
Vaidya B, Imrie H, Geatch DR, Perros P, Ball SG, Baylis PH, et al. Association analysis of the cytotoxic T lymphocyte antigen-4 (CTLA-4) and autoimmune regulator-1 (AIRE-1) genes in sporadic autoimmune Addison’s disease. J Clin Endocrinol Metab. 2000;85:688–91. https://doi.org/10.1210/jcem.85.2.6369.
Article
CAS
PubMed
Google Scholar
Brozzetti A, Marzotti S, Tortoioli C, Bini V, Giordano R, Dotta F, et al. Cytotoxic T lymphocyte antigen-4 Ala17 polymorphism is a genetic marker of autoimmune adrenal insufficiency: Italian association study and meta-analysis of European studies. Eur J Endocrinol. 2010;162:361–9. https://doi.org/10.1530/EJE-09-0618.
Article
CAS
PubMed
Google Scholar
Wolff ASB, Mitchell AL, Cordell HJ, Short A, Skinningsrud B, Ollier W, et al. CTLA-4 as a genetic determinant in autoimmune Addison’s disease. Genes Immun. 2015;16:430–6. https://doi.org/10.1038/gene.2015.27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pérez de Nanclares G, Martín-Pagola A, Ramón Bilbao J, Vázquez F, Castaño L. No evidence of association of CTLA4 polymorphisms with Addison’s disease. Autoimmunity. 2004;37:453–6. https://doi.org/10.1080/08916930400001917.
Article
CAS
PubMed
Google Scholar
Falorni A, Brozzetti A, Perniola R. From genetic predisposition to molecular mechanisms of autoimmune primary adrenal insufficiency. Front Horm Res. 2016;46:115–32. https://doi.org/10.1159/000443871.
Article
CAS
PubMed
Google Scholar
Oberbauer AM, Benemann KS, Belanger JM, Wagner DR, Ward JH, Famula TR. Inheritance of hypoadrenocorticism in bearded collies. Am J Vet Res. 2002;63:643–7.
Article
PubMed
Google Scholar
Famula TR, Belanger JM, Oberbauer AM. Heritability and complex segregation analysis of hypoadrenocorticism in the standard poodle. J Small Anim Pract. 2003;44:8–12.
Article
CAS
PubMed
Google Scholar
Oberbauer AM, Bell JS, Belanger JM, Famula TR. Genetic evaluation of Addison’s disease in the Portuguese water dog. BMC Vet Res. 2006;2:15. https://doi.org/10.1186/1746-6148-2-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chase K, Sargan D, Miller K, Ostrander EA, Lark KG. Understanding the genetics of autoimmune disease: two loci that regulate late onset Addison’s disease in Portuguese water dogs. Int J Immunogenet. 2006;33:179–84. https://doi.org/10.1111/j.1744-313X.2006.00593.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hughes AM, Nelson RW, Famula TR, Bannasch DL. Clinical features and heritability of hypoadrenocorticism in Nova Scotia duck tolling retrievers: 25 cases (1994–2006). J Am Vet Med Assoc. 2007;231:407–12. https://doi.org/10.2460/javma.231.3.407.
Article
PubMed
Google Scholar
Boag AM, Catchpole B. A review of the genetics of hypoadrenocorticism. Top Companion Anim Med. 2014;29:96–101. https://doi.org/10.1053/j.tcam.2015.01.001.
Article
PubMed
Google Scholar
Massey J, Boag AM, Short AD, Scholey RA, Henthorn PS, Littman MP, et al. MHC class II association study in eight breeds of dog with hypoadrenocorticism. Immunogenetics. 2013;65:291–7. https://doi.org/10.1007/s00251-013-0680-2.
Article
CAS
PubMed
Google Scholar
Hughes AM, Jokinen P, Bannasch DL, Lohi H, Oberbauer AM. Association of a dog leukocyte antigen class II haplotype with hypoadrenocorticism in Nova Scotia duck tolling retrievers. Tissue Antigens. 2010;75:684–90. https://doi.org/10.1111/j.1399-0039.2010.01440.x.
Article
CAS
PubMed
Google Scholar
Gershony LC, Belanger JM, Short AD, Le M, Hytönen MK, Lohi H, et al. DLA class II risk haplotypes for autoimmune diseases in the bearded collie offer insight to autoimmunity signatures across dog breeds. Canine Genet Epidemiol. 2019;6:1–13. https://doi.org/10.1186/s40575-019-0070-7.
Article
Google Scholar
Safra N, Pedersen NC, Wolf Z, Johnson EG, Liu HW, Hughes AM, et al. Expanded dog leukocyte antigen (DLA) single nucleotide polymorphism (SNP) genotyping reveals spurious class II associations. Vet J. 2011;189:220–6. https://doi.org/10.1016/j.tvjl.2011.06.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seddon JM, Berggren KT, Fleeman LM. Evolutionary history of DLA class II haplotypes in canine diabetes mellitus through single nucleotide polymorphism genotyping. Tissue Antigens. 2010;75:218–26. https://doi.org/10.1111/j.1399-0039.2009.01426.x.
Article
CAS
PubMed
Google Scholar
Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017;18. https://doi.org/10.1186/s13059-017-1207-1.
Hughes AM, Bannasch DL, Kellett K, Oberbauer AM. Examination of candidate genes for hypoadrenocorticism in Nova Scotia duck tolling retrievers. Vet J. 2011;187:212–6. https://doi.org/10.1016/j.tvjl.2009.10.012.
Article
CAS
PubMed
Google Scholar
Short AD, Boag A, Catchpole B, Kennedy LJ, Massey J, Rothwell S, et al. A candidate gene analysis of canine Hypoadrenocorticism in 3 dog breeds. J Hered. 2013;104:807–20. https://doi.org/10.1093/jhered/est051.
Article
CAS
PubMed
Google Scholar
Short AD, Catchpole B, Boag AM, Kennedy LJ, Massey J, Rothwell S, et al. Putative candidate genes for canine hypoadrenocorticism (Addison’s disease) in multiple dog breeds. Vet Rec. 2014;175:430. https://doi.org/10.1136/vr.102160.
Article
CAS
PubMed
Google Scholar
Short AD, Saleh NM, Catchpole B, Kennedy LJ, Barnes A, Jones CA, et al. CTLA4 promoter polymorphisms are associated with canine diabetes mellitus. Tissue Antigens. 2010;75:242–52. https://doi.org/10.1111/j.1399-0039.2009.01434.x.
Article
CAS
PubMed
Google Scholar
Threlfall AJ, Boag AM, Soutter F, Glanemann B, Syme HM, Catchpole B. Analysis of DLA-DQB1 and polymorphisms in CTLA4 in cocker spaniels affected with immune-mediated haemolytic anaemia. Canine Genet Epidemiol. 2015;2:1–10. https://doi.org/10.1186/s40575-015-0020-y.
Article
Google Scholar
Wigginton JE, Cutler DJ, Abecasis GR. A note on exact tests of hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76:887–93. https://doi.org/10.1086/429864.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5:1564–73. https://doi.org/10.1038/nprot.2010.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wittke-Thompson JK, Pluzhnikov A, Cox NJ. Rational inferences about departures from hardy-Weinberg equilibrium. Am J Hum Genet. 2005;76:967–86. https://doi.org/10.1086/430507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu K, Li Q, Bergen AW, Pfeiffer RM, Rosenberg PS, Caporaso N, et al. Pathway analysis by adaptive combination of P-values. Genet Epidemiol. 2009;33:700–9. https://doi.org/10.1002/gepi.20422.
Article
PubMed
PubMed Central
Google Scholar
Juran BD, Atkinson EJ, Larson JJ, Schlicht EM, Liu X, Heathcote EJ, et al. Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: evidence for a gene-gene interaction. Hepatology. 2010;52:223–9. https://doi.org/10.1002/hep.23667.
Article
CAS
PubMed
Google Scholar
Barreto M, Santos E, Ferreira R, Fesel C, Fontes MF, Pereira C, et al. Evidence for CTLA4 as a susceptibility gene for systemic lupus erythematosus. Eur J Hum Genet. 2004;12:620–6. https://doi.org/10.1038/sj.ejhg.5201214.
Article
CAS
PubMed
Google Scholar
Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A, et al. Five-vertebrate ChlP-seq reveals the evolutionary dynamics of transcription factor binding. Science. 2010;328:1036–40. https://doi.org/10.1126/science.1186176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dermitzakis ET, Clark AG. Evolution of transcription factor binding sites in mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol. 2002;19:1114–21.
Article
CAS
PubMed
Google Scholar
Ziegler SF. FOXP3 of mice and men. Annu Rev Immunol. 2006;24:209–26. https://doi.org/10.1146/annurev.immunol.24.021605.090547.
Article
CAS
PubMed
Google Scholar
Bickhart DM, Liu GE. Identification of candidate transcription factor binding sites in the cattle genome. Genom Proteomic Bioinforma. 2013;11:195–8. https://doi.org/10.1016/j.gpb.2012.10.004.
Article
CAS
Google Scholar
Whiteld TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND, et al. Functional analysis of transcription factor binding sites in human promoters. Genome Biol. 2012;13:R50. https://doi.org/10.1186/gb-2012-13-9-r50.
Article
CAS
Google Scholar
Bartůněk P, Králová J, Blendinger G, Dvořák M, Zenke M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. 2003;22:1927–35. https://doi.org/10.1038/sj.onc.1206281.
Fu W, Ergun A, Lu T, Hill JA, Haxhinasto S, Fassett MS, et al. A multiply redundant genetic switch “locks in” the transcriptional signature of regulatory T cells. Nat Immunol. 2012;13:972–80. https://doi.org/10.1038/ni.2420.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haaning Andersen AD, Lange M, Lillevang ST. Allelic variation of the inducible costimulator (ICOS) gene: detection of polymorphisms, analysis of the promoter region, and extended haplotype estimation. Tissue Antigens. 2003;61:276–85.
Article
CAS
PubMed
Google Scholar
Neefjes J, Jongsma MLM, Paul P, Bakke O, Jongsma MLM. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011. https://doi.org/10.1038/nri3084.
Macleod D, Charlton J, Mullins J, Bird AP. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 1994;8:2282–92. https://doi.org/10.1101/gad.8.19.2282.
Article
CAS
PubMed
Google Scholar
Wolberger C. Combinatorial transcription factors. Curr Opin Genet Dev. 1998;8:552–9.
Article
CAS
PubMed
Google Scholar
Sadlon TJ, Wilkinson BG, Pederson S, Brown CY, Bresatz S, Gargett T, et al. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. J Immunol. 2010;185:1071–81. https://doi.org/10.4049/jimmunol.1000082.
Article
CAS
PubMed
Google Scholar
Wu H, Peisley A, Graef IA, Crabtree GR. NFAT signaling and the invention of vertebrates. Trends Cell Biol. 2007;17:251–60. https://doi.org/10.1016/j.tcb.2007.04.006.
Article
CAS
PubMed
Google Scholar
Gibson HM, Hedgcock CJ, Aufiero BM, Wilson AJ, Hafner MS, Tsokos GC, et al. Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J Immunol. 2007;179:3831–40.
Article
CAS
PubMed
Google Scholar
Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006;126:375–87. https://doi.org/10.1016/j.cell.2006.05.042.
Article
CAS
PubMed
Google Scholar
Hoppler S, Kavanagh CL. Wnt signalling: variety at the core. J Cell Sci. 2007;120:385–93. https://doi.org/10.1242/jcs.03363.
Article
CAS
PubMed
Google Scholar
Ioannidis V, Beermann F, Clevers H, Held W. The beta-catenin-TCF-1 pathway ensures CD4 (+) CD8 (+) thymocyte survival. Nat Immunol. 2001;2:691–7. https://doi.org/10.1038/90623.
Article
CAS
PubMed
Google Scholar
Xue H-H, Zhao D-M. Regulation of mature T cell responses by the Wnt signaling pathway. Ann N Y Acad Sci. 2012;1247:16–33. https://doi.org/10.1111/j.1749-6632.2011.06302.x.
Article
CAS
PubMed
Google Scholar
Shah KV, Chien AJ, Yee C, Moon RT. CTLA-4 is a direct target of Wnt/β-catenin signaling and is expressed in human melanoma tumors. J Invest Dermatol. 2008;128:2870–9. https://doi.org/10.1038/jid.2008.170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chistiakov DA, Savost’anov KV, Turakulov RI, Efremov IA, Demurov LM. Genetic analysis and functional evaluation of the C/T (−318) and a/G(−1661) polymorphisms of the CTLA-4 gene in patients affected with graves’ disease. Clin Immunol. 2006;118:233–42. https://doi.org/10.1016/j.clim.2005.09.017.
Article
CAS
PubMed
Google Scholar
Wang XB, Zhao X, Giscombe R, Lefvert AK. A CTLA-4 gene polymorphism at position−318 in the promoter region affects the expression of protein. Genes Immun. 2002;3:233–4. https://doi.org/10.1038/sj.gene.6363869.
Article
CAS
PubMed
Google Scholar
Kavvoura FK, Akamizu T, Awata T, Ban Y, Chistiakov DA, Frydecka I, et al. Cytotoxic T-lymphocyte associated antigen 4 gene polymorphisms and autoimmune thyroid disease: a meta-analysis. J Clin Endocrinol Metab. 2007;92:3162–70. https://doi.org/10.1210/jc.2007-0147.
Article
CAS
PubMed
Google Scholar
Chang M-C, Chang Y-T, Tien Y-W, Liang P-C, Jan I-S, Wei S-C, et al. T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chem. 2007;53:1700–5. https://doi.org/10.1373/clinchem.2007.085951.
Article
CAS
PubMed
Google Scholar
Kavvoura FK, Ioannidis JPA. CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2005;162:3–16. https://doi.org/10.1093/aje/kwi165.
Article
PubMed
Google Scholar
Tang S, Tang H, Zhang Q, Wang C, Wang Y, Peng W. Association of cytotoxic T-lymphocyte associated antigen 4 gene polymorphism with type 1 diabetes mellitus: a meta-analysis. Gene. 2012;508:165–87. https://doi.org/10.1016/j.gene.2012.07.044.
Article
CAS
PubMed
Google Scholar
Wicker LS, Chamberlain G, Hunter K, Rainbow D, Howlett S, Tiffen P, et al. Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol. 2004;173:164–73. https://doi.org/10.4049/jimmunol.174.5.2870.
Article
CAS
PubMed
Google Scholar
Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB. Annotating non-coding regions of the genome. Nat Rev Genet. 2010;11:559–71. https://doi.org/10.1038/nrg2814.
Article
CAS
PubMed
Google Scholar
Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11. https://doi.org/10.1038/nature01621.
Article
CAS
PubMed
Google Scholar
Sutter NB, Ostrander EA. Dog star rising: the canine genetic system. Nat Rev Genet. 2004;5:900–10. https://doi.org/10.1038/nrg1492.
Article
CAS
PubMed
Google Scholar